15 - Apr - 2018

2

-

0

A.

Arithmetic sequence :

eg: 10, 14, 18, 22, 26, is an arithmetic sequence.

a1, a2, a3, a4, a5, ...

Determining arithmetic sequence: $a_{n+1} - a_n = k$, where k is a constant $\forall n \ge 1$. Sum of first n terms = $(a_1 + a_n)n$

can view sequence at as set of co-ordinates: (1,10) (2,14) (3,18) (4,22) (5,26) in (x,y) form. constant slope $\rightarrow 4$

can represent this sequence as a formula: $y = 4x + 10^{-6}$ or $a_n = 4n + 10^{-3}$ and $a_n = 4n + 6 \rightarrow forms a discrete time \rightarrow n \in N^*$ formula.

Eg: 7,9, 11 i) Find a formula for nth term. ii) Find a formula for nth term. ii) Find a formula for the sum of 1st n terms iii) Find the sum of the first 200 terms.

Ans: i) $a_n = mn + b$ $m = 2 \rightarrow slope m = a_{n+1} - a_n$ for any $n \in N^*$ b = 5 $a_n = 2n + 5$

ii) $a_{200} = 2(200) + 5 = 405$

 $iii) \sum_{i=1}^{2} a_i = \frac{200^2 + 6(200)}{2},$

= 41200.

Geometric sequence :

ratio betw \cdot any 2 consecutive numbers / terms is constant. $a_2 = a_3 = a_4 = \cdots = a_{n+1} = same constant = r.$ $a_1 = a_2 = a_3$ $a_1 = a_2 = a_3$

 E_{g} : 4, 12, 36, ... $r = a_{2} = 3$.

ai

BRUNNEN I

i) Find a formula for the nth term ii) Find a formula for the sum of first n terms

Scanned by CamScanner

2 00 (1 1 mar 10)

Answer: i)
$$a_{n} = a_{1}r^{n-1} = 4(a)^{n-1}$$

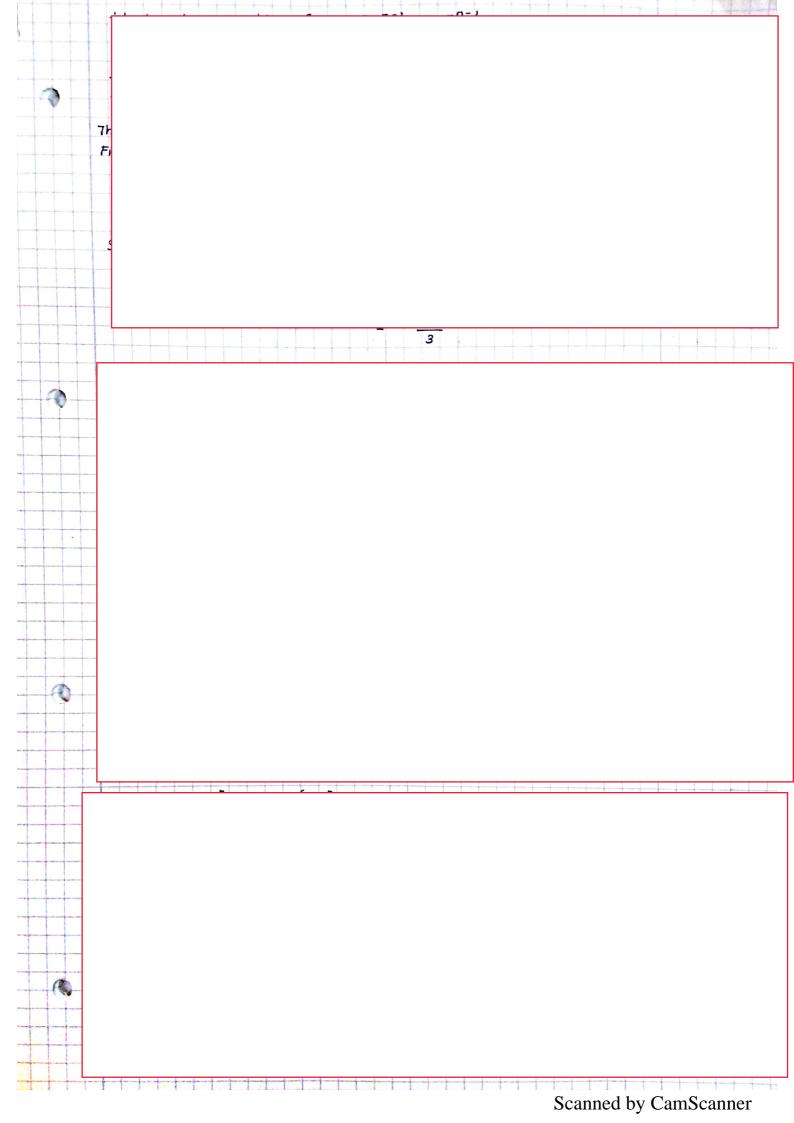
 $eg \ a_{a} = 4(a)^{r}$
 $= 1a_{a}$
 $a_{5} = 4(3)^{4} = 324$
Note: $a_{n} = a_{1}r^{n-1}$ gives discrete exponential formula $\rightarrow n \in \mathbb{N}^{*}$
ii) $\frac{n}{2}$
 $a_{i} = \frac{a_{1}r^{n} - a_{i}}{r-1}$
 $= \frac{a_{1}r^{n} - a_{i}}{r-1}$
 $\frac{1}{r-1} = \frac{1}{r-1}$
Deriving formula: Suppose $S_{n} = a_{1} + a_{1}r^{2} + a_{1}r^{3} + \dots + a_{1}r^{n-1} + a_{1}r^{n}$
 $r^{n} = s_{1}r^{n} - a_{1}$
 $r^{n} = a_{1}r^{n} - a_{1}$
 $r^{n} = a_{1}r^{n} - a_{1}$
 $r^{n} = a_{1}r^{n} - a_{1}$
 r^{n-1}
Deriving formula: Suppose $S_{n} = a_{1} + a_{1}r^{2} + a_{1}r^{3} + \dots + a_{1}r^{n-1} + a_{1}r^{n}$
 $r^{n} + S_{n} - S_{n} = a_{1}r^{n} - a_{1} = S_{n}(r^{n} - a_{1}) = a_{1}(r^{n} - 1)$
 $r^{n} + r^{n} - 1$
Arithmetic - Geometric Sequence:
Eq: Suppose $a_{n} = 4a_{n-1} - 3a_{n-2}$, $a_{i} = 2$
Find a formula for a_{n} .
Net: $a_{3} = 4a_{3} - 3a_{3} = 4(16) - 3(2) = 34$
 $a_{4} = 4a_{3} - 3a_{3} = 4(16) - 3(2) = 34$
 $a_{4} = 4a_{3} - 3a_{3} = 4(16) - 3(2) = 34$
 $a_{5} = 5a_{5} - 5a_{5} - 2a_{5} -$

-

-

anner

Ó



$$\begin{array}{c} \mathbf{G}_{n} = \mathbf{G}_{n=2} + \mathbf{G}_{n-1} + \mathbf{G}_{n-2} \\ \mathbf{G}_{n=1} = \mathbf{G}_{n=2} + \mathbf{G}_{n-1} + \mathbf{G}_{n-2} \\ \mathbf{G}_{n=1} = \mathbf{G}_{n=2} + \mathbf{G}_{n-1} \\ \mathbf{G}_{n=1} = \mathbf{G}_{n-2} + \mathbf{G}_{n-2} \\ \mathbf{G}_{n=1} = \mathbf{G}_{n-1} + \mathbf{G}_{n-1} \\ \mathbf{G}_{n=1} = \mathbf{G}_{n-1} \\ \mathbf{G}_{n=1} = \mathbf{G}_{n-1} \\ \mathbf{G}_{n=1} = \mathbf{G}_{n-1} \\ \mathbf{G}_{n-1} = \mathbf{G}_{n-1} \\ \mathbf{G}_{n-1} = \mathbf{G}_{n-1} \\ \mathbf{G}_{n-1} = \mathbf{G}_{n-1} \\ \mathbf{G}_{n-1} \\ \mathbf{G}_{n-1} = \mathbf{G}_{n-1} \\ \mathbf{G}_{n-1} \\$$

Scanned by CamScanner